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Constraint Satisfaction Problem (CSP)

� Constraint Satisfaction Problem P:

Input: a set V of variables

a set of corresponding domains of variable values        [discrete, finite]

a set of constraints on V       [constraint ≡ set of allowed value tuples]

Output: a solution, valuation of variables that satisfies all constraints

Well Known CSPs:
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� k-SAT: Boolean satisfiability

� Domains: {0,1}  or  {true, false}

� Constraints: disjunctions of variables or 
their negations (“clauses”) with exactly k variables each

� k-COL: Graph coloring

� Variables: nodes of a given graph

� Domains: colors 1…k

� Constraints: no two adjacent nodes get the same color.
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Encoding CSPs

� One can visualize the connections between variables and constraints in 
so called factor graph:

� A bipartite undirected graph with two types of nodes:

• Variables: one node per variable        Factors: one node per constraint
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SAT Problem: Factor Graph:

� Each factor node α has an associated factor function fα(xα), weighting 
the variable setting. For CSP, fα(xα)=1 iff constraint is satisfied, else =0

� Weight of the full configuration x: 

� Summing weights of all configurations defines partition function:

• For CSPs the partition function computes the number of solutions

Can we count “clusters” of solutions similarly? 
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Talking about Clusters
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More direct 
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[Kroc, Sabharwal, 
Selman ’08 ‘09]
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[Mezard et al. ’09]
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Clusters as Combinatorial Objects

� Definition: A solution graph is an undirected graph where nodes 
correspond to solutions and are neighbors if they differ in value of only 
one variable. 

� Definition: A solution cluster is a connected 
component of a solution graph.

� Note: this is not the only possible definition of a cluster
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Thinking about Clusters

� Clusters are subsets of solutions, possibly exponential in size

� not practical to work with

� To compactly represent clusters, we trade off expressive power for 
shorter representation

� loose some details, but gain representability

� Approximate by hypercubes “from outside” & “from inside”

� Hypercube: Cartesian product of non-empty subsets of variable domains

• E.g. with ∗ = {0,1},

y = (1∗∗) is a 
2-dimensional hypercube 

in 3-dim space

� From outside: The (unique) minimal hypercube enclosing the whole cluster.

� From inside: A (non-unique) maximal hypercube fitting inside the cluster.
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� To reason about clusters, we seek a factor graph representation

� Because we can do approximate inference on factor graphs

� Need to count clusters with an expression similar to Z for solutions:

Factor Graph for Clusters

= 1 iff x is a solution

Checks whether all 

points in yα are good 

� Indeed, we derive the following for approximating number of clusters:

� Syntactically very similar to standard Z, which 
computes exactly number of solutions

� Exactly counts clusters under certain conditions, as discussed later

� Analogous expression can be derived for any discrete variable domain
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Counting Solution Clusters

Divide-and-Conquer Recursively:

� Arbitrarily pick a variable, say x, of formula F

� Count how many clusters contain solutions with x=0

(ok if the cluster has solutions with both x=0 and x=1)

� Add number of clusters that contain solutions with x=1

� Subtract number of clusters that contain both solutions with x=0 and 

solutions with x=1

#clusters  =  #clusters(F)|x=0 +  #clusters(F)|x=1 − #clusters(F)|x=0 & x=1

Key issues:

� how can we compute #clusters(F)|x=0?
(#clusters|x=1 would be similar)

� how do we compute #clusters(F)|x=0 & x=1 ? (not a problem for SAT)

x=1

x=0

(Inclusion - exclusion formula)
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Computing #clusters(F)|x=0:   Fragmentation

� Algorithmically, easiest way is to

� “fix” x to 0 in the formula F,  compute #clusters in new formula (F|x=0)

� So, use as approximation:       #clusters(F)|x=0 ≈ #clusters(F|x=0)

� Risk? 

� Potential over-counting:  a cluster of F may
break/fragment into several smaller,
disconnected clusters when x is fixed to 0

� Interestingly: Clusters often do not fragment!

� In particular, provably no fragmentation in 2-SAT and 3-COL*
instances! (any instance, i.e., worst-case).

� Also, empirically holds for almost all clusters in random 3-SAT, 
logistics, circuits, …

x=0 x=1

a cluster in F could fragment to
2 clusters in F|x=0
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Theoretical Results: Exactness of Z(-1)

On what kind of solution spaces does Z(-1) count clusters exactly?

� Theorem: Z(-1) is exact for any 2-SAT problem.

� Theorem: Z(-1) is exact for a 3-COL problem on G, if every connected 
component of G has at least one triangle.

� Theorem: Z(-1) is exact if the solution space decomposes into 
“recursively-monotone subspaces”.

Any connected 

graph
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Empirical Results: Z(-1) for SAT

Random 3-SAT, n=90, α=4.0
One point per instance

Random 3-SAT, n=200, α=4.0
One point per variable

One instance
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Empirical Results: Z(-1) for SAT

� Z(-1) is remarkably accurate even for many structured formulas (formulas 
encoding some real-world problem):
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BP for Estimating Z(-1)

� Recall that the number of clusters is very well approximated by

� This expression is in a form that is very similar to the standard partition 
function of the original problem, which we can approximate with BP.

� Z(-1) can also be approximated with “BP”: the factor graph remains 
the same, only the semantics is generalized:

� Variables:

� Factors:

� And we need to adapt the BP equations to cope with (-1).
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BP Adaptation for (-1)

� Standard BP equations can be derived as stationary point conditions
for continuous constrained optimization problem  [Yedidia et al. ‘05]

� Let p(x) be the uniform distribution over solutions of a problem

� Let b(x) be a unknown parameterized distribution from a certain family

� The goal is to minimize DKL(b||p) over parameters of b(.)

� Use b(.) to approximate answers about p(.)

� The BP adaptation for Z(-1) follows exactly the same path, and 
generalizes where necessary.

� We call this adaptation BP(-1)

One can derive a message passing algorithm for 

inference in factor graphs with (-1)
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The Resulting BP(-1)

� The BP(-1) iterative equations:

Relation to SP:

� For SAT:  BP(-1) is equivalent to SP

� The instantiation of the BP(-1) equations can be rewritten as SP equations

� For COL: BP(-1) is different from SP

� BP(-1) estimates the total number of clusters

� SP estimates the number of clusters with most frequent size

The black part is BP
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BP(-1): Results for COL

Experiment: rescaling number of clusters and Z(-1)

1.  for 3-colorable graphs with various average degrees (x-axis)

2.  count log(Z(-1))/N and log(ZBP(-1))/N (y-axis)  

The rescaling assumes that

#clusters=exp(N Σ(c))

Σ(c) is so called complexity
and is instrumental in various 

physics-inspired approaches 

to cluster counting (will see 

later)

Sketch of SP results:

Nonzero between 

4.42 and 4.69
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Summary

� Truly combinatorial framework for cluster counting: Z(-1)

� Applicable to structured problems (contrast with original SP clusters)

� With theoretical exactness results

� Algorithm for approximate inference over clusters: BP(-1)

� Direct derivation of SP for SAT

� Allows derivation of new algorithms for other combinatorial problems


